Contents

N	otatio	n	xvi			
P	art I	Gravitational-wave theory	1			
1	The	geometric approach to GWs	3			
	1.1	Expansion around flat space	4			
	1.2					
	1.3	Interaction of GWs with test masses	13			
		1.3.1 Geodesic equation and geodesic deviation	13			
		1.3.2 Local inertial frames and freely falling frames	15			
		1.3.3 TT frame and proper detector frame	17			
	1.4	The energy of GWs	26			
		1.4.1 Separation of GWs from the background	27			
		1.4.2 How GWs curve the background	29			
		1.4.3 The energy–momentum tensor of GWs	35			
	1.5	Propagation in curved space-time	40			
		1.5.1 Geometric optics in curved space	42			
		1.5.2 Absorption and scattering of GWs	46			
	1.6	Solved problems	48			
		1.1. Linearization of the Riemann tensor in curved space				
		1.2. Gauge transformation of $h_{\mu\nu}$ and $R^{(1)}_{\mu\nu\rho\sigma}$	49			
	Furth	ner reading	51			
2	The field-theoretical approach to GWs					
	2.1	Linearized gravity as a classical field theory	53			
		2.1.1 Noether's theorem	53			
		2.1.2 The energy–momentum tensor of GWs	58			
		2.1.3 The angular momentum of GWs	61			
	2.2	Gravitons	66			
		2.2.1 Why a spin-2 field?	66			
		2.2.2 The Pauli–Fierz action	70			
		2.2.3 From gravitons to gravity	74			
	2.2	2.2.4 Effective field theories and the Planck scale	79			
	2.3	Massive gravitons	81			
		2.3.1 Phenomenological bounds	82			
	0.4	2.3.2 Field theory of massive gravitons	84			
	2.4	Solved problems	95			
		2.1. The helicity of gravitons	95			
	Th (1	2.2. Angular momentum and parity of graviton states	98 100			
	Further reading					

3	Gen	eration of GWs in linearized theory	101
	3.1	Weak-field sources with arbitrary velocity	102
	3.2	Low-velocity expansion	105
	3.3	Mass quadrupole radiation	109
		3.3.1 Amplitude and angular distribution	109
		3.3.2 Radiated energy	113
		3.3.3 Radiated angular momentum	114
		3.3.4 Radiation reaction on non-relativistic sources	116
		3.3.5 Radiation from a closed system of point masses	121
	3.4	Mass octupole and current quadrupole	125
	3.5	Systematic multipole expansion	131
		3.5.1 Symmetric-trace-free (STF) form	134
		3.5.2 Spherical tensor form	139
	3.6	Solved problems	156
		3.1. Quadrupole radiation from an oscillating mass	156
		3.2. Quadrupole radiation from a mass in circular orbit	158
		3.3. Mass octupole and current quadrupole radiation from	
		a mass in circular orbit	161
		3.4. Decomposition of $\dot{S}^{kl,m}$ into irreducible representa-	
		tions of $SO(3)$	163
	-	3.5. Computation of $\int d\Omega \left(\mathbf{T}_{lm}^{E2,B2}\right)_{ij}^* n_{i_1} \cdots n_{i_{\alpha}}$	165
	Furt	her reading	166
4	-	lications	167
	4.1	Inspiral of compact binaries	167
		4.1.1 Circular orbits. The chirp amplitude	169
		4.1.2 Elliptic orbits. (I) Total power and frequency	
		spectrum of the radiation emitted	176
		4.1.3 Elliptic orbits. (II) Evolution of the orbit under	
		back-reaction	184
		4.1.4 Binaries at cosmological distances	190
	4.2	Radiation from rotating rigid bodies	200
		4.2.1 GWs from rotation around a principal axis	201
		4.2.2 GWs from freely precessing rigid bodies	204
	4.3	Radial infall into a black hole	215
		4.3.1 Radiation from an infalling point-like mass	215
		4.3.2 Tidal disruption of a real star falling into a black	0.3
		hole. Coherent and incoherent radiation	219
	4.4	Radiation from accelerated masses	224
		4.4.1 GWs produced in elastic collisions	224
		4.4.2 Lack of beaming of GWs from accelerated	
		masses	227
	4.5	Solved problems	230
		4.1. Fourier transform of the chirp signal	230
		4.2. Fourier decomposition of elliptic Keplerian motion	233
	Furt	her reading	235

5	GW		ation by post-Newtonian sources	236
	5.1	The po	ost-Newtonian expansion	237
		5.1.1	Slowly moving, weakly self-gravitating sources	237
		5.1.2	PN expansion of Einstein equations	239
		5.1.3	Newtonian limit	240
		5.1.4	The 1PN order	242
		5.1.5	Motion of test particles in the PN metric	245
		5.1.6	Difficulties of the PN expansion	247
		5.1.7	The effect of back-reaction	249
	5.2		elaxed Einstein equations	250
	5.3		lanchet-Damour approach	253
		5.3.1	Post-Minkowskian expansion outside the source	253
		5.3.2	PN expansion in the near region	259
		5.3.3	Matching of the solutions	263
		5.3.4	Radiative fields at infinity	266
		5.3.5	Radiation reaction	275
	5.4		IRE approach	279
	5.5	Strong	-field sources and the effacement principle	282
	5.6	Radiat	tion from inspiraling compact binaries	289
		5.6.1	The need for a very high-order computation	290
		5.6.2	The 3.5PN equations of motion	292
		5.6.3	Energy flux and orbital phase to 3.5PN order	294
		5.6.4	The waveform	296
	Furtl	ner read	ing	299
6	Exp	erimen	tal observation of GW emission in	
	com	pact bi	naries	302
	6.1	The H	ulse-Taylor binary pulsar	302
	6.2	The p	ulsar timing formula	305
		6.2.1	Pulsars as stable clocks	305
		6.2.2	Roemer, Shapiro and Einstein time delays	306
		6.2.3	Relativistic corrections for binary pulsars	314
	6.3	The de	ouble pulsar, and more compact binaries	326
	Furt	her read	ing miles a sale	331
Pa	art I	I: Gra	avitational-wave experiments	333
7	Data	a analy	sis techniques	335
	7.1		oise spectral density	335
	7.2	Patter	n functions and angular sensitivity	339
	7.3		ed filtering	343
	7.4	Proba	bility and statistics	346
		7.4.1	Frequentist and Bayesian approaches	346
		7.4.2	Parameters estimation	350
		7.4.3	Matched filtering statistics	356
	7.5	Bursts		361
	9	7.5.1	Optimal signal-to-noise ratio	361

	7.6	Period	lic sources	371
		7.6.1	Amplitude modulation	373
		7.6.2	Doppler shift and phase modulation	375
		7.6.3	Efficient search algorithms	381
	7.7	Coales	scence of compact binaries	387
		7.7.1	Elimination of extrinsic variables	388
		7.7.2	The sight distance to coalescing binaries	390
	7.8	Stocha	astic backgrounds	392
		7.8.1	Characterization of stochastic backgrounds	393
		7.8.2	SNR for single detectors	397
		7.8.3	Two-detector correlation	400
	Furt	her read	ling	413
8	Res		mass detectors	415
	8.1	The in	nteraction of GWs with an elastic body	415
		8.1.1	The response to bursts	415
		8.1.2	The response to periodic signals	420
		8.1.3	The absorption cross-section	421
	8.2	The re	ead-out system: how to measure extremely small	
		displac	cements	427
		8.2.1	The double oscillator	428
		8.2.2	Resonant transducers	432
	8.3	Noise	sources	436
		8.3.1	Thermal noise	437
		8.3.2	Read-out noise and effective temperature	443
		8.3.3	Back-action noise and the quantum limit	446
		8.3.4	Quantum non-demolition measurements	449
		8.3.5	Experimental sensitivities	453
	8.4		ant spheres	459
		8.4.1	The interaction of a sphere with GWs	459
		8.4.2	Spheres as multi-mode detectors	466
	Furt	her read	ing	469
9		rferom		470
	9.1		ple Michelson interferometer	470
		9.1.1	The interaction with GWs in the TT gauge	471
		9.1.2	The interaction in the proper detector frame	476
	9.2		erometers with Fabry–Perot cavities	480
		9.2.1	Electromagnetic fields in a FP cavity	480
		9.2.2	Interaction of a FP cavity with GWs	489
		9.2.3	Angular sensitivity and pattern functions	494
	9.3		d a real GW interferometer	497
		9.3.1	Diffraction and Gaussian beams	497
		9.3.2	Detection at the dark fringe	504
		9.3.3	Basic optical layout	510
		9.3.4	Controls and locking	511

Time-frequency analysis

Coincidences

365

369

7.5.2

7.5.3

9.4	Noise sources		
	9.4.1	Shot noise	516
	9.4.2	Radiation pressure	519
	9.4.3	The standard quantum limit	522
	9.4.4	Displacement noise	524
9.5	Existing and planned detectors		528
	9.5.1	Initial interferometers	528
	9.5.2	Advanced interferometers	532
Furt	Further reading		
Bibliog	graphy		537
Index			549