CONTENTS

Preface	xvii
Math Tips	xxi
PART I. STARS, PLANETS, AND LIF	E 1
I THE SIZE AND SCALE OF THE UNIVERSE	3
1 Scientific notation review Writing numbers in scientific notation.	3
2 How long is a year? Calculating the number of seconds in a year.	3
3 How fast does light travel? Calculating the number of kilometers in a light-year.	3
4 Arcseconds in a radian Calculating the number of arcseconds in a radian, a number use whenever applying the small-angle formula.	3 d
5 How far is a parsec? Converting from parsecs to light-years and astronomical units.	3
6 Looking out in space and back in time Exploring the relationship between distance and time when traveling at the speed of light.	4

7	Looking at Neptune The time for light to travel from Earth to the planet Neptune depends on where it and we are in our respective orbits.	4
8	Far, far away; long, long ago There is an intrinsic time delay in communicating with spacecraft elsewhere in the solar system or elsewhere in the Milky Way galaxy.	5
9	Interstellar travel Calculating how long it takes to travel various distances at various speeds.	6
10	Traveling to the stars Calculating how long it would take to travel to the nearest stars.	6
11	Earth's atmosphere Calculating the mass of the air in Earth's atmosphere, and comparing it with the mass of the oceans.	7
2	FROM THE DAY AND NIGHT SKY TO PLANETARY ORBITS	8
12	Movements of the Sun, Moon, and stars Exploring when and where one can see various celestial bodies.	8
13	Looking at the Moon There is a lot you can infer by just looking at the Moon!	8
14	Rising and setting Questions about when various celestial bodies rise and set.	9
15	Objects in the sky More questions about what you can learn by looking at objects in the sky.	9
16	Aristarchus and the Moon Determining the relative distance to the Moon and the Sun using high-school geometry.	10
17	The distance to Mars Using parallax to determine how far away Mars is.	11
18	The distance to the Moon Using parallax to determine how far away the Moon is.	11
19	Masses and densities in the solar system Calculating the density of the Sun and of the solar system	11

3	NEWTON'S LAWS	13
20	Forces on a book Using Newton's laws to understand the forces on a book resting on a table.	13
91	Going ballistic	10
21	Calculating the speed of a satellite in low Earth orbit.	13
22	Escaping Earth's gravity? Calculating the distance at which the gravitational force from Earth and the Moon are equal.	14
23	Geosynchronous orbits	14
	Calculating the radius of the orbit around Earth that is synchronized with Earth's rotation.	
24	Centripetal acceleration and kinetic energy in Earth orbit Calculating the damage done by a collision with space debris.	14
25	Centripetal acceleration of the Moon and the law of universal gravitation Comparing the acceleration of the Moon in its orbit to that of a dropped apple at Earth's surface.	15
26	Kepler at Jupiter Applying Kepler's laws to the orbits of Jupiter's moons.	16
27	Neptune and Pluto Calculating the relationship of the orbits of Neptune and Pluto.	17
28	Is there an asteroid with our name on it? How to deflect an asteroid that is on a collision course with Earth.	17
29	Halley's comet and the limits of Kepler's third law Applying Kepler's third law to the orbit of Halley's comet.	18
30	You cannot touch without being touched The motion of the Sun due to the gravitational pull of Jupiter.	19
31	Aristotle and Copernicus An essay about ancient and modern views of the heavens.	19
4–6	HOW STARS RADIATE ENERGY	20
32	Distant supernovae Using the inverse square law relating brightness and luminosity.	20

33	Spacecraft solar power Calculating how much power solar panels on a spacecraft can generate.	20
34	You glow! Calculating how much blackbody radiation our bodies give off.	21
35	Tiny angles Understanding the relationship between motions in space and in the plane of the sky.	21
36	Thinking about parallax How nearby stars appear to move in the sky relative to more distant stars, due to the Earth's motion around the Sun.	22
37	Really small angles and distant stars The Gaia spacecraft's ability to measure parallax of distant stars.	22
38	Brightness, distance, and luminosity Exploring the relationship between brightness and luminosity of various stars.	23
39	Comparing stars Relating the luminosity, radius, surface temperature, and distance of stars.	23
40	Hot and radiant Exploring the relation between the properties of stars radiating as blackbodies.	24
41	A white dwarf star Calculating the distance and size of a white dwarf star.	24
42	Orbiting a white dwarf Using Kepler's third law to determine the orbit around a white dwarf star.	24
43	Hydrogen absorbs Using the spectrum of an F star to understand the energy levels of a hydrogen atom. A challenge problem.	25
7–8	THE LIVES AND DEATHS OF STARS	27
44	The shining Sun Calculating the rate at which hydrogen fuses to helium in the core of the Sun.	27

40	Thermonuclear fusion and the Heisenberg	
	uncertainty principle	27
	Using quantum mechanics to determine the conditions under which	
	thermonuclear fusion can take place in the core of a star. A challenge problem.	
46	Properties of white dwarfs	29
	Using direct observations of a white dwarf to determine its radius and	
	density. A challenge problem.	
47	Squeezing into a white dwarf	30
	Determining how far apart the nuclei in a white dwarf star are.	
48	Flashing in the night	30
	Determining whether the gravity of a pulsar is adequate to hold it together	
	as it spins.	
49	Life on a neutron star	31
	Calculating the effects of the extreme gravity of a neutron star.	
50	Distance to a supernova	31
	Watching a supernova remnant expand, and using this to determine how	
	far away it is.	
51	Supernovae are energetic!	32
	Putting the luminosity of a supernova in context.	
52	Supernovae are dangerous!	33
	What would happen if a supernova were to explode within a few hundred	
	light-years of Earth?	
53	Neutrinos coursing through us	33
	Calculating the flux and detectability of neutrinos emitted during a	
	supernova explosion.	
54	A really big explosion	34
	Calculating the energy associated with a gamma-ray burst.	
55	Kaboom!	36
	Calculating the properties of one of the most powerful gamma-ray bursts	
	ever seen.	
56	Compact star	36
	Calculating the distance between nuclei in a neutron star.	
57	Orbiting a neutron star	37
	Applying Kepler's third law for an orbit around a neutron star.	