Contents

Contributor contact details

Woodhead Publishing Series in Energy

Preface

Part I: Operational challenges and structural alloy requirements

1. Gas turbines: operating conditions, components and material requirements
 1.1 Introduction
 1.2 Overview of materials systems and their role in gas turbines
 1.3 Operating conditions and materials selection
 1.4 Critical degradation mechanisms, aging and monitoring
 1.5 Materials performance assessment and life management
 1.6 Materials limitations, challenges and future directions
 1.7 Acknowledgements
 1.8 Sources of further information and advices
 1.9 References

2. Steam turbines: operating conditions, components and material requirements
 2.1 Introduction
 2.2 High temperature cylinder components
 2.3 Factors affecting the service life of high temperature components
 2.4 Low temperature cylinder components
 2.5 Factors affecting the service life of low temperature components

Note: xi, xv, xxii are page numbers.
2.6 Conclusion 34
2.7 References 35

3 High temperature materials issues in the design and operation of coal-fired steam turbines and plant 36
F. STARR, Consultant, UK

3.1 Introduction 36
3.2 Recent power plant history and its lessons 38
3.3 Challenges of advanced plants 40
3.4 Thermodynamics and design of the steam and water circuits 44
3.5 Design and operation of furnace and boiler 48
3.6 Superheater design issues 53
3.7 Two shift cycling 60
3.8 Material issues in the development of advanced steam plants 62
3.9 Discussion 64
3.10 Conclusions 66
3.11 References 66

4 Nuclear power plants: types, components and material requirements 69
J. F. KNOTT, The University of Birmingham, UK

4.1 Introduction 69
4.2 UK gas-cooled reactors: Magnox and advanced gas-cooled reactors (AGR) 74
4.3 The pressurised water reactor (PWR) 88
4.4 ‘Generation IV’ systems: the fusion reactor 95
4.5 Conclusion 99
4.6 References 100

Part II Structural alloys and their development 103

5 Austenitic steels and alloys for power plants 105
Y. YIN and R. FAULKNER, Loughborough University, UK and F. STARR, Consultant, European Technology Ltd, UK

5.1 Introduction 105
5.2 The Fe-C phase diagram and austenitic steels 106
5.3 Microstructure and properties of austenitic steels 108
5.4 Other problems with the use of austenitics 137
5.5 Modern Japanese alloys 142
5.6 Discussion and future work 146

5.7 Sources of further information

6 Bainitic steels and

6.1 Introduction
6.2 Transformations in advanced steels
6.3 Tempering heat treatment
6.4 Desirable properties used in power plants
6.5 Developments of bainitic steels
6.6 Conclusion
6.7 References

7 Ferritic and martensitic steels
P. J. ESHER, University of Birmingham, UK

7.1 Introduction
7.2 Metallurgical background
7.3 Power plant ferritic, bainitic and martensitic steels
7.4 Steam oxidation
7.5 Production and fabrication
7.6 Power plant experience
7.7 Further development
7.8 Sources of further information
7.9 References and further reading

8 Structural materials for advanced energy plants
W. HOFFELNER, RWTH AACHEN UNIVERSITY

8.1 Introduction
8.2 Oxide dispersion strengthened steels
8.3 Ferritic-martensitic ODS alloys
8.4 ODS materials based on conventional steels
8.5 Production of nanoparticles
8.6 Components manufactured from nanoparticles
8.7 Properties of nanoparticles
8.8 Other materials with improved temperature application
8.9 Conclusion
8.10 Acknowledgement
8.11 References
Contents

5.7 Sources of further information and advice 147
5.8 References 148

6 Bainitic steels and alloys for power plants 153
M. J. Peet, University of Cambridge, UK

6.1 Introduction 153
6.2 Transformations in steels 156
6.3 Tempering heat treatment and service 173
6.4 Desirable properties for high temperature components used in power plants 176
6.5 Developments of bainitic power plant steels 178
6.6 Conclusion 182
6.7 References 183

7 Ferritic and martensitic steels for power plants 188
P. J. Ennis, University of Leicester, UK

7.1 Introduction 188
7.2 Metallurgical background 191
7.3 Power plant ferritic, bainitic and martensitic steels 196
7.4 Steam oxidation 209
7.5 Production and fabrication of power plant components 212
7.6 Power plant experience with most recently developed steels 214
7.7 Further development of power plant steels 215
7.8 Sources of further information and advice 216
7.9 References and further reading 217

8 Structural materials containing nanofeatures for advanced energy plants 221
W. Hoffelner, RWH consult GmbH, Switzerland

8.1 Introduction 221
8.2 Oxide dispersion strengthening (ODS) 224
8.3 Ferritic-martensitic ODS steels 226
8.4 ODS materials based on a non-ferrous matrix 231
8.5 Production of nanoparticles containing alloys and components 232
8.6 Components manufactured from ODS alloys 234
8.7 Properties of nanoparticle-containing steels 235
8.8 Other nanofeatures used to strengthen alloys for high temperature applications 238
8.9 Conclusion 242
8.10 Acknowledgement 243
8.11 References 243
Contents

9 Development of creep-resistant steels and alloys for use in power plants
F. Abe, National Institute for Materials Science (NIMS), Japan

9.1 Introduction
9.2 Basic methods of strengthening steels and alloys at elevated temperatures
9.3 Development progress of creep-resistant steels and alloys
9.4 Degradation in creep strength of components subjected to elevated temperature
9.5 Advanced alloy design of creep-resistant steels and Ni-base superalloys to mitigate materials degradation
9.6 Conclusion and future trends
9.7 References

10 Development of advanced alloys with improved resistance to corrosion and stress corrosion cracking (SCC) in power plants
S. Prakash, Indian Institute of Technology, India

10.1 Introduction
10.2 Overview of corrosion and stress corrosion
10.3 Development of alloys
10.4 Creep-fatigue behaviour of steels and superalloys
10.5 Advanced design and use of alloys
10.6 Future trends
10.7 References and further reading

11 Design and material issues in improving fracture/fatigue resistance and structural integrity in power plants
J. F. Knott, The University of Birmingham, UK

11.1 Introduction
11.2 Engineering design and brittle fracture
11.3 Linear elastic fracture mechanics
11.4 Yielding fracture mechanics: the failure assessment diagram (FAD)
11.5 Brittle fracture in power plant steels
11.6 Inter-granular fracture in turbine disc steel
11.7 Potential concerns in nuclear reactor pressure vessel (RPV) steels
11.8 Fatigue: S-N curves, Miner’s Law, stress concentrators
11.9 Fatigue crack propagation

11.10 Fatigue induced by thermal loading
11.11 Fatigue crack growth and fracture mechanics
11.12 Conclusion
11.13 References

12 Radiation damage to steam power plants: mechanisms
G. S. Was, University of Michigan, General Electric Global Research

12.1 Introduction
12.2 Overview: the radiation damage problem
12.3 Physical degradation
12.4 Stress-related degradation
12.5 Environmental factors in radiation damage
12.6 The response of stainless steels
12.7 The response of other alloys
12.8 The response of pressure vessels
12.9 The response of advanced alloys
12.10 Conclusion
12.11 Sources of further information
12.12 References

13 The use of advanced alloys in nuclear power plant problems in power plants
D. J. Arsoy, TWI, UK and G. S. Was, University of Michigan, General Electric Global Research

13.1 Introduction
13.2 Parent steel behaviour and data
13.3 Welding and the resulting defect
13.4 Advantages and limitations
13.5 Advanced design and use of alloys
13.6 Future trends
13.7 Sources of further information
13.8 References and further reading

14 Modelling creep in nickel power plants
H. V. Atkinson and S. P. A. G. Wallis

14.1 Introduction
14.2 Empirical methods
14.3 Semi-empirical models
14.4 Neural network approaches
11.10 Fatigue induced by thermal strain 343
11.11 Fatigue crack growth and interactions 345
11.12 Conclusion 350
11.13 References 353

12 Radiation damage to structural alloys in nuclear power plants: mechanisms and remediation 355
G. S. WAS, University of Michigan, USA and P. L. ANDRESEN, General Electric Global Research, USA

12.1 Introduction 355
12.2 Overview: the radiation damage event 356
12.3 Physical degradation 360
12.4 Stress-related degradation 370
12.5 Environmental factors in cracking 381
12.6 Environmental factors in fracture 385
12.7 The response of stainless steel to irradiation 389
12.8 The response of pressure vessel steels to irradiation 402
12.9 The response of advanced alloys to irradiation 407
12.10 Conclusion 410
12.11 Sources of further information and advice 411
12.12 References 412

13 The use of advanced alloys to resolve welding problems in power plants 421
D. J. AISON, TWI, UK and G. MATHERS, Consultant, UK

13.1 Introduction 421
13.2 Parent steel behaviour and the analysis of creep rupture data 427
13.3 Welding and the resulting residual stresses 428
13.4 Advantages and limitations of particular alloys 433
13.5 Advanced design and use of newer alloys 436
13.6 Future trends 436
13.7 Sources of further information and advice 442
13.8 References and further reading 442

14 Modelling creep in nickel alloys in high temperature power plants 447
H. V. ATKINSON and S. P. A. GILL, University of Leicester, UK

14.1 Introduction 447
14.2 Empirical methods 449
14.3 Semi-empirical models 451
14.4 Neural network approaches 453