Contents

	Pref	iace		<i>page</i> xi
1	Introduction			1
	1.1	Differences or Differentials?		1
	1.2			3
	1.3	Iterations, Ancient and Modern		5
	1.4	Accelerator History: The Two Golden Ages		6
	Exer	rcises		10
2	Linear Motion			13
	2.1	Stable Oscillations		13
	2.2	Transverse Motion through Magnets		16
	2.3	Matrix Equations of Motion		19
	Exer	cises		22
3	Stroi	ng Focusing Transverse Optics		24
	3.1	Linear Stability and Twiss Functions		25
	3.2	Turn-by-Turn Motion in Phase Space	1	27
	3.3	Propagation across a Fraction of a Turn		29
	3.4	Continuous Propagation		30
	3.5	FODO Cell Optics		32
	Exer	cises		35
4	Longitudinal and Off-Momentum Motion		37	
	4.1	Constant Momentum Offset: Transverse Motion		37
	4.2	The Dispersion Function		39
	4.3	Oscillating Momentum: Longitudinal Motion		41
	4.4	The Standard Map		45
	Exer			48

viii Contents

5	Action	n and Emittance – One Particle or Many?	50
	5.1	Transverse Action-Angle Co-ordinates	50
	5.2	Unnormalised Emittances and Beam Sizes	52
	5.3	Tune Spread and Filamentation	54
	5.4	Linac (Phase Space Area) Emittances	56
	5.5	Normalised Emittance and Adiabatic Damping	58
	5.6	Longitudinal Phase Space Parameters	60
	Exerci	ises	61
6	Magn	ets	63
	6.1	Normal and Skew Multipole Magnets	63
	6.2	Iron-Dominated Magnets	65
	6.3	Conductor-Dominated Magnets	66
	6.4	Field Quality and Errors	67
	Exerc	ises	69
7	RF Ca	avities	73
	7.1	Waveguides	73
	7.2	Transverse Modes	74
	7.3	Cylindrical Resonant Cavities - Pill-Boxes	76
	7.4	Cavity Performance Limits	79
	Exerc	ises	81
8	Linea	r Errors and Their Correction	83
	8.1	Trajectory and Closed Orbit Errors	83
	8.2	Linear Coupling	88
	8.3	Tune Shifts and β -Waves	89
	Exerc	ises	92
9	Sextu	poles, Chromaticity and the Hénon Map	94
	9.1	Chromaticity in a FODO Lattice	94
	9.2	Chromaticity Correction	96
	9.3	The Hénon Map - A Unit Strength Sextupole in 1-D	98
	9.4	A Taxonomy of 1-D Motion	100
	9.5	Dynamic Aperture	103
	Exerc	rises	104
10	Octupoles, Detuning and Slow Extraction		
	10.1	Single Octupole Lattice	107
	10.2	Discrete Motion in Action-Angle Space, (J, ϕ)	109
	10.3	Two-Turn Motion with $Q \approx 1/2$	110

0				
Co	FI	to	n_1	2

	Contents	ix
	10.4 Slow Extraction near the Half-Integer	111
	Exercises	113
11	Synchrotron Radiation – Classical Damping	116
	11.1 Spectrum and Distribution Pattern	116
	11.2 Energy Loss Per Turn and Longitudinal Damping	119
	11.3 Continuous Acceleration	124
	11.4 Transverse Damping and Partition Numbers	126
	Exercises	
12	Synchrotron Radiation – Quantum Excitation	131
	12.1 Energy Spread	132
	12.2 Horizontal Emittance	134
	12.3 Vertical Emittance	138
	Exercises	139
13	Linacs – Protons and Ions	141
	13.1 Time Structures	142
	13.2 Multi-Cell Synchronism	145
	13.3 Linear Motion	147
	13.4 Radio Frequency Quadrupoles	153
	13.5 Beam Losses and Haloes	157
	Exercises	158
14	Linacs - Electrons	159
	14.1 Longitudinal and Transverse Focusing	159
	14.2 RF Capture	161
	14.3 Bunch Compression	162
	14.4 Recirculating and Energy Recovery Linacs	164
	14.5 Beam Breakup	166
	Exercises	169
15	The Beam-Beam Interaction and 1-D Resonances	170
	15.1 Round Beam-Beam Interaction	170
	15.2 First-Order Theory of 1-D Resonances	174
	15.3 Resonance Island Tunes and Widths	176
	Exercises	180
16	Routes to Chaos	181
	16.1 Resonance Overlap	182
	16.2 Tune Modulation	184
	16.3 Dynamical Zones in Tune Modulation Space	187
	Exercises	190

Contents

App	endix I	A Selected Formulae for Accelerator Design	191
	A.1	Matrices for Linear Motion through Accelerator Elements	191
	A.2	Propagation of Twiss Functions	196
	Refer	ences	198
Index		201	