PREFACE

This handbook for routing interconnects inside a VLSI chip provides mathematical
models of important classes of wiring techniques for students interested in gaining
insights in integrated circuits layout automation techniques and for practicing engineers
working in the field of electronic design automation ( EDA). This book presents a
comprehensive review on VLSI routing techniques that was undertaken in early 1990’s
with a view to developing a generalized routing accelerator that could speed up routing
chores for different styles of wiring techniques, namely, maze routing used widely for
connecting different circuit blocks by finding the shortest path, channel routing used in
connecting standard cells of uniform heights and variable widths arranged in the form of
rows of cells, switchbox routing used in connecting surrounding multiple blocks of

dissimilar aspect ratios within an enclosed routing area, and so on.

In 1988, when I started my academic career at the University of Michigan, I
designed a new graduate-level course on computer-aided design, EECS 527. VLSI
Layout Algorithms. The course was introduced to educate graduate students and spur
doctoral research in the-then burgeoning field of computer-aided design (CAD) for
integrated circuits (ICs) that propelled the exponential growth of integration density in
VLSI chips, as postulated by Moore’s Law. At that time, there was no suitable
textbook on the subject to teach graduate students about the state-of-the-art layout
algorithms that were key to design complex VLSI chips. Therefore, I combed through
the literature on the subject and assembled the course materials in order to teach
students systematically basic underlying mathematical techniques for circuit
partitioning, floor-planning, cell placement, and routing. Subsequently, I engaged my

own doctoral students to expand my lecture materials in the form of comprehensive



reviews.

For example, with the assistance of my doctoral student, Dr. K. Shahookar, who
studied the Genetic Algorithm ( GA) for VLSI cell placement techniques, I coauthored
a 78-page review paper, which was published in ACM Computing Surveys in June
1991. After poring over nearly a hundred publications on placement algorithms for
standard cells and macro-cells, 1 divided them into five main categories: (i) the
placement by simulated annealing, (ii) the force-directed placement, (iii) the
placement by min-cut graph algorithms, (iv) the placement by numerical
optimization, and (v) the evolution-based placement. While the first two types of
algorithms owe their origin to physical laws, the third and fourth are analytical
techniques, and the fifth class of algorithms is derived from biological phenomena. The
taxonomy of placement algorithms was created to study inherent parallelism of the
different classes of algorithms. While designing the course, I realized that in order to
push the mammoth potential of Moore’s Law, the chip design phase must be

accelerated several folds by harnessing the evolving computing platforms.

In the late 80’s, the computing platforms for the VLSI design environment were
rapidly transforming from mid-frame computers, namely, Digital Equipment
Corporation Vax 11/780, Hewlett Packard HP 3000, and Wang Laboratories Wang
VS, to the network of workstations, what is widely known as the NOW. This
opportunity in hardware evolution warranted deeper insights into VLSI cell placement
and routing ( P&R) techniques so that sequential algorithms that used to run on
standalone mid-frame computers could be rendered into parallel CAD algorithms for
running efficiently on the NOW platform. Also, emergence of commercial parallel
computers such as Intel hypercube and Sequent Computer System shared memory had

further pushed the needs for developing parallel P&R algorithms.

In order to promote the NOW platform for EDA research, I started working with
my students to develop imaginative distributed Genetic Algorithms ( GAs) for
partitioning, placement and floor-planning techniques needed in VLSI chip layout
automation. My research group had at that time developed an EDA tool, named
Wolverines for parallel implementation of standard cell placement algorithms on the
NOW platform. Since workstations are connected by a local area network ( LAN) that

often deploys the Ethernet to connect different workstations, communication of packets



between two specific workstations generally require considerable time even when the
Ethernet did not undergo collision of message packets. Because of the length of a
LAN, two workstations located afar may locally sense and infer that the Ethernet is free
and may launch packets asynchronously. In case, there is a collision of packets, all
the senders must abandon transmission by backing off. Then they wait randomly within
the range of time before attempting to transmit the packet. If a sender encounters the
collision of packet again, it then waits randomly over a period of time that is twice
longer than the previous time period. This exponential backing off protocol used in
random-access LAN causes a severe constraint to run parallel routing algorithms
because of their fine-granularity of parallelism in contrast with placement algorithms

that do not require frequent communications in parallel mode of operation over

the NOW.

Therefore, the vision I had at that time is to develop distributed version of Genetic
Algorithms (GAs) that can accelerate the partitioning, floor-planning and placement of
cells on the NOW without requiring any hardware augmentation of workstations. The
main impediments we encountered at that time were that unlike simulated annealing
and graph-based techniques, the GAs could not be directly applied to solve VLSI
layout problems. Professor John Holland, who invented the Genetic Algorithm at the
University of Michigan, had devised the GA to solve a plethora of theoretical and
practical problems that quintessentially required functional optimization. The GA
applies its biology-inspired operators such as crossover, mutation and inversion in the
genotype or chromosomal representation of the problem. The fundamental premise in
GA is that genetic codes of biological creatures encapsulate their physical
characteristics. The crossover operator in the GA produces offspring by splicing
fragments of two different chromosomes pertaining to the two parents. Therefore, the
. GA applies all its transformations by combining the features of chromosomes on the
- genotype of a problem. In order to obtain the solution of a problem, the genotype is
mapped on to its phenotype or physical appearance. It is well known that the functional
optimization problems work very well with GA type algorithms since there are no
inconsistencies between the genotype and phenotype of a problem. In other words, the

genetic codes always generate feasible solutions in functional optimization problems.

However, the EDA algorithms for placement is a constrained combinatorial



