当前位置:
首页
>
电子教材
>
详细信息
快速检索
数据库:
各中心已购纸本教材
各中心已购电子教材
国内高校课程
国外著名大学课程
外文原版教材出版信息
外文影印版教材出版信息
名校购书信息
关键词:
Supervised Machine Learning for Text Analysis in R
书目信息
ISBN:
9781000461978
本馆索书号:
中图分类号:
H08
中文译名:
使用R语言的文本分析监督机器学习
作者:
Emil Hvitfeldt
编者:
语种:
英语
出版信息
出版社:
CRC Press
出版地:
出版年:
2021
版本:
版本类型:
原版
丛书题名:
卷期:
文献信息
关键词:
前言:
摘要:
内容简介:
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised machine learning for text analysis in r explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches.
目次:
全文链接:
读者对象:
实体信息
页码:
其它信息
原版ISBN:
书评:
扩展信息
相关附件