当前位置:
首页
>
出版信息
>
详细信息
快速检索
数据库:
各中心已购纸本教材
各中心已购电子教材
国内高校课程
国外著名大学课程
外文原版教材出版信息
外文影印版教材出版信息
名校购书信息
关键词:
Lie Groups
书目信息
ISBN:
9780387211541(13位)
中图分类号:
O1
杜威分类号:
中文译名:
李群
作者:
Bump
编者:
语种:
English
出版信息
出版社:
Springer
出版地:
出版年:
2004
版本:
版本类型:
原版
丛书题名:
Graduate Texts in Mathematics Vol. 225
卷期:
文献信息
关键词:
Mathematics
前言:
摘要:
内容简介:
This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory o f the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties. Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997) and Algebraic Geometry (World Scientific 1998).
目次:
Haar Measure.- Schur Orthogonality.- Compact Operators.- The Peter-Weyl Theorem.- Lie Subgroups of GL(n, C).- Vector Fields.- Left Invariant Vector Fields.- The Exponential Map.- Tensors and Universal Properties.- The Universal Enveloping Algebra.- Extension of Scalars.- Representations of sl(2, C).- The Universal Cover.- The Local Frobenius Theorem.- Tori.- Geodesics and Maximal Tori.- Topological Proof of Cartan's Theorem.- The Weyl Integration Formula.- The Root System.- Examples of Root Systems.- Abstract Weyl Groups.- The Fundamental Group.- Semisimple Compact Groups.- Highest Weight Vectors.- The Weyl Character Formula.- Spin.- Complexification.- Coxeter Groups.- The Iwasawa Decomposition.- The Bruhat Decomposition.- Symmetric Spaces.- Relative Root Systems.- Embeddings of Lie Groups.- Mackey Theory.- Characters of GL(n, C).- Duality between Sk and GL(n, C).- The Jacobi-Trudi Identity.- Schur Polynomials and GL(n, C).- Schur Polynomials and Sk.- Random Matrix Theory.- Minors of Toeplitz Matrices.- Branching Formulae and Tableaux.- The Cauchy Identity.- Unitary Branching Rules.- The Involution Model for Sk.- Some Symmetric Algebras.- Gelfand Pairs.- Hecke Algebras.- Cohomology of Grassmannians.
附录:
全文链接:
读者对象:
grad.
实体信息
页码:
装帧:
hard
尺寸:
其它形态细节:
其它信息
原价:
EUR
46.9500
原版ISBN:
其它ISBN:
图书特色:
书评:
扩展信息
Isbn:
0387211543
issue:
2006JC01
相关附件