当前位置:
首页
>
出版信息
>
详细信息
快速检索
数据库:
各中心已购纸本教材
各中心已购电子教材
国内高校课程
国外著名大学课程
外文原版教材出版信息
外文影印版教材出版信息
名校购书信息
关键词:
Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric and Ionospheric
书目信息
ISBN:
9780471251217(13位)
中图分类号:
TN
杜威分类号:
中文译名:
无线通信的天线与传播
作者:
Blaunstein
编者:
语种:
English
出版信息
出版社:
John Wiley & Sons
出版地:
出版年:
2006
版本:
版本类型:
原版
丛书题名:
卷期:
文献信息
关键词:
TECHNOLOGY/Electronics / General
前言:
摘要:
内容简介:
Today there is a conversion of existing wireless networks, labeled as? the second generation (2G), third (3G),? and fourth (4G) generations of wireless networks. To design such networks successfully, it is very important to predict the propagation characteristics of each radio channel used, to define the optimal location? of subscribers, whether stationary or mobile, as well as the number? of base stations, in order to? provide high quality service (QoS)? for each individual subscriber located in a given the area of service. These functions can be achieved by using smart antennas at one or both ends of a communication link.? Accurate information about the physical propagation processes that occur? in each specific link? increase the? performance of smart antennas and the efficiency of service (called grade of service, GoS) for each subscriber. This book provides a complete discussion of all the topics that are important in the design of wireless communication systems.
目次:
Preface. Chapter One: Fundamentals of Radio Communications. 1.1. Radio Communication Link. 1.2. Frequency Band for Radio Communications. 1.3. Noise in Radio Communication Links. 1.4. Main Propagation Characteristics. 1.5. Problems in Adaptive Antennas Application. Bibliography. Chapter Two: Antenna Fundamentals. 2.1. Radiation Pattern. 2.2. Field Regions of an Antenna. 2.3. Radiation Intensity. 2.4. Directivity and Gain. 2.5. Polarization. 2.6. Terminal Antennas in Free Space. 2.7. Antenna Types. Bibliography. Chapter Three: Fundamentals of Wave Propagation in Random Media. 3.1. Main Wave Equations and Random Functions. 3.2. The Perturbation Method for Multiple Scattering. The Mean Perturbed Propagator. The Mean Double Propagator. Mass Operator and Dyson Equation. 3.3. An Exact Solution of 1D-Equation. 3.4. Approximations of the Perturbation Method. 3.5. Random Taylor Expansion at Short Wavelengths. 3.6. An Exact Solution of the Scalar Wave Equation. Approximate Evaluations of the Functional Integral (3.137). 3.7. The Electromagnetic Wave Equation. 3.8. Propagation in Statistically Inhomogeneous Media. 3.9. Propagation in Homogeneous Anisotropic Media. Bibliography. Chapter Four: Electromagnetic Aspects of Wave Propagation over Terrain. 4.1. Waves Propagation in Free Space. 4.2. Path Loss in Free Space. 4.3. Radio Propagation Above Flat Terrain. 4.4. Propagation Above Rough Terrain Under LOS Conditions. 4.5. Propagation Above a Smooth Curved Terrain. 4.6. Effect of a Single Obstacle Placed on a Flat Terrain. Bibliography. Chapter Five: Terrestrial Radio Communications. 5.1. Characterization of the Terrain. 5.2. Propagation Scenarios in Terrestrial Communication Links. 5.3. Propagation over a Flat Terrain in LOS Conditions. 5.4. Propagation over a Hilly Terrain in NLOS Conditions. 5.5. Effect of a Building on the Radio Propagation Channel. 5.6. Propagation in Rural Forest Environments. 5.6.1. A Model of Multiple Scattering in a Forested Area. 5.6.2. Comparison with Other Models. 5.7. Propagation in Mixed Residential Areas. 5.8. Propagation in Urban Environments. Bibliography. Chapter Six: Effects of the Troposphere on Radio Propagation. 6.1. Main Propagation Effects of the Troposphere as a Spherical Layered Gaseous Continuum. 6.2. Effects of the Hydrometeors on Radio Propagation in the Troposphere. 6.3. Effects of Tropospheric Turbulences on Radio Propagation. 6.4. Link Budget Design for Tropospheric Communication Links. Bibliography. Chapter Seven: Ionospheric Radio Propagation. 7.1. Main Ionospheric Effects on Radio Propagation. 7.2. Effects of the Inhomogeneous Ionosphere on Radio Propagation. 7.3. Back and Forward Scattering of Radio Waves by Small-Scale Ionospheric Inhomogeneities. Bibliography. Chapter Eight: Indoor Radio Propagation. 8.1. Main Propagation Processes and Characteristics. 8.2. Modeling of Loss Characteristics in Various Indoor Environments. 8.3. Link Budget Design Verification by Experimental Data. Bibliography. Chapter Nine: Adaptive Antennas for Wireless Networks. 9.1. Antenna Arrays. 9.2. Beamforming Techniques. 9.3. Adaptive Antenna for Wireless Communication Applications. 9.4. Network Performance Improvement Using an Antenna Array. Summary. Bibliography. Chapter Ten: Prediction of Signal Distribution in Space, Time and Frequency Domains in Radio Channels for Adaptive Antenna Applications. 10.1. Predicting Models for Indoor Communication Channels. 10.2. Predicting Models for Outdoor Communication Channels. 10.3. Experimental Verification of Signal Power Distribution in Azimuth, Elevation, and Time Delay Domains. 10.4. Signal Power Spectra Distribution in Frequency Shift Domain. Bibliography. Chapter Eleven: Multipath Fading Phenomena in Land Wireless Links. 11.1. Prediction of Loss Characteristics for Land Radio Links. 11.2. Link Budget Design for Various Land Environments. 11.3. Characterization of Multipath Radio Channel by Rician Factor. 11.4. Main Algorithm of Radio Coverage (Radio Map) Design. Bibliography. Chapter Twelve: Cellular Communication Networks Design Based on Radio Propagation Phenomena. 12.1. Grade of Service (GOS) Design Operating in Multipath Fading Environment. 12.2. Propagation Aspects of Cell Planning. 12.3. Prediction of Parameters of Information Data Stream. Channel Capacity and Spectral Efficiency. Relations Between Main Parameters. Bibliography. Chapter Thirteen: Prediction of Operational Characteristics of Adaptive Antennas. 13.1. Experimental Verification of Signal Distribution in Azimuth, Time Delay, and Doppler Shift Domains. 13.2. Prediction of Adaptive Antenna Characteristics Based on Unified Stochastic Approach. Bibliography. Chapter Fourteen: LandSatellite Communication Links. 14.1. Objective. 14.2. Type of Signals in LandSatellite Communication Links. 14.3. Statistical Models. 14.4. PhysicalStatistical Models. 14.5. The Unified Algorithm for Fading Phenomena Prediction. 14.6. Mega-Cell Concept for Land Satellite Communication Links. 14.7. "Mega-Cell" Global Networks Design. Summary. Bibliography. Index.
附录:
全文链接:
读者对象:
实体信息
页码:
614
装帧:
Cloth
尺寸:
其它形态细节:
其它信息
原价:
USD
124.9500
原版ISBN:
其它ISBN:
图书特色:
书评:
扩展信息
Isbn:
0471251216
相关附件