Contents

Prefa	ce is		
1.	Introduction		
	1.1 Structural analysis: the main concept		
	1.2 Stress and strain measurements in a deformable body		
	1.2.1 Kinematics of a deformable body: strain analysis		
	1.2.2 Equilibrium considerations and stress analysis 2		
	1.3 Constitutive modeling for solid deformable bodies 2		
	1.4 Finite element modeling 3		
	1.5 Some comments regarding large deformation problems 4 References 4		
2.	Calibration of constitutive models 4		
	2.1 Mechanical characterization of materials—some standard		
	procedures 4		
	2.2 Inverse analysis for parameter quantification problems 5		
	2.3 Summary 5		
	References 5		
3.	Inverse analysis		
	3.1 Introduction 5		
	3.2 Illustrative example 1—simple structure formed by springs and		
	a rigid bar 5		
	3.2.1 Outline of the structure 5		
	3.2.2 Identification of one spring stiffness 5		
	3.2.3 Identification of two spring stiffnesses 6		
	3.3 Illustrative example 2—simple truss system 7		
	3.3.1 Outline of the structure		
	3.3.2 Overview of the identification procedure		
	3.3.3 Case study 1: identification of one elastic modulus 7.		
	3.3.4 Case study 2: identification of two elastic moduli		
	3.4 Brief overview of optimization strategies 7		

	3.5 Summary References	80 81	
4.	Elastic constitutive models	83	
	4.1 Fully symmetric elastic behavior—isotropic materials	83	
	4.2 Orthotropic elastic materials	89	
	4.3 Anisotropy	93	
	4.4 Large elastic deformation—generalization of the concept	94	
	4.5 Thermoelastic constitutive equations 4.6 Summary	99	
	References	104	
	References	105	
5.	Constitutive models for inelastic deformation	107	
	5.1 Visco-elastic models	108	
	5.1.1 Linear visco-elastic models	109	
	5.2 Elasto-plastic constitutive models	118	
	 Continuum plasticity: formulation of one-dimensional constitutive model 	120	
	5.2.2 Continuum plasticity for the general three-dimensional		
	state of stress: elastic constants and yield conditions	130	
	5.2.3 Flow rule for continuum plasticity	137	
	5.2.4 Introducing hardening for a three-dimensional state of stress	144	
	5.3 Constitutive models for inelastic deformation due to material	4.40	
	damage 5.3.1 Isotropic damage model for a general three-dimensional	148	
	5.3.1 Isotropic damage model for a general three-dimensional stress state	160	
	5.3.2 Anisotropic damage models for a general	160	
	three-dimensional stress state	164	
	5.4 Coupled damage plasticity models	166	
	5.5 Modeling crack initiation and propagation	169	
	5.6 Summary	177	
	References	178	
6.	Numerical implementation of constitutive models with		
	large deformation	181	
	6.1 Geometrically nonlinear problems	182	
	6.2 Strain and stress measures for the total Lagrangian description	184	
	6.3 Tangent stiffness matrix for geometrically nonlinear problems: a simple one-dimensional example		
	6.4 Tangent stiffness matrix for a two-dimensional	193	
	displacement-based finite element	198	
	6.5 Numerical example: total Lagrangian iterative procedure with	130	
	one finite element	201	

	6.5.1	The influence of the elastic constants on the solution	208
		relastic models	213
	6.6.1	Calculating stresses and the tangent stiffness matrix for	
		hyperelastic models	217
	6.6.2	Incompressibility and mesh locking	221
	6.6.3	Reduced and selective reduced integration	224
	6.6.4	Strain energy density function separating the volumetric	
		and deviatoric terms	231
	6.7 Summ	nary	235
	Reference	s	236
7.	Metals		239
	7.1 The st	andard elasto-plastic modular matrix for the von Mises	
		city model	243
		return algorithm	245
	7.2.1	Backward-Euler return algorithm	246
		erical implementation of the von Mises plasticity without	
	harde		252
		anical characterization of metals	266
	7.4.1	Elasto-plastic material calibration based on an	265
		indentation test	267
	7.5 Sumn		275
	Reference	25	276
8.	Polyme	rs	277
	8.1 Visco	-elastic response and model calibration	279
	8.2 Mode	eling and mechanical characterization of elastomers	286
	8.3 Sumn		292
	Reference		292
9.	Shape n	nemory alloys	293
	9.1 Intro	duction	293
	9.2 Shape	e memory effect	294
		relasticity	296
		rial modeling	298
	9.5 Chara	acterization of material properties	304
	9.6 Sumr	nary	310
	Reference	es	313
Ind	lex		315