Contents

Pre	zjace	page xiii
Con	ntributors	xv
Intr	roduction to UAV Systems	1
1.1		2
	1.1.1 Fixed-wing UAVs	3
	1.1.2 Flapping-wing UAVs	5
	1.1.3 Rotary-wing UAVs	8
	1.1.4 Convertible UAVs	10
	1.1.5 Hybrid UAVs	14
1.2	UAV Swarming and Miniaturization	16
1.3	UAV Miniaturization: Challenges and Opportunities	17
	1.3.1 Gust Sensitivity	18
	1.3.2 Energy Density	18
	1.3.3 Aerodynamic Efficiency	19
	1.3.4 Other Design Challenges	19
1.4	UAV Networks and Their Advantages	19
	1.4.1 Unique Features of Airborne Networks	22
	1.4.2 Mobility Models for UAV Networks	22
	1.4.3 State of the art in UAV Networks	23
1.5	Summary	25
Air-	to-Ground and Air-to-Air Data Link Communication	26
2.1	Air-to-Ground Communication for Manned Aviation	26
	2.1.1 Radar for Ground-based Aircraft Identification	27
	2.1.2 Distance and Direction Measurements Beyond Radar	30
	2.1.3 Instrument Landing System for Precise Localization	31
	2.1.4 Voice Communication between Air and Ground	31
2.2	Modernization of Aerial Communication for Future Growth	32
	2.2.1 Modern Surveillance and Navigation	32
	2.2.2 Digital Communication for ATM	33
2.3	Practical UAV and MUAV Data Links	35
	2.3.1 Control and Telemetry	36
	2.3.2 Payload or Application Data Communication	36

	2.4	Analy	sis of Terrestrial Wireless Broadband Solutions for UAV Links	37
		2.4.1	Single Antenna UAV System Analysis	38
		2.4.2	Multiple Antenna UAV Air-to-Air Link Analysis	38
		2.4.3	Multiple Antenna UAV Air-to-Ground Link Analysis	41
	2.5	Concl	lusions	44
3	Anni	al Wir	. Notario	
3			Networks	45
	3.1		luction	45
	3.2		Network Characteristics	46
		3.2.1	Vehicles	47
		3.2.2	3D Nature	47
			Mobility	48
	2.2		Payload and Flight Time Constraints	48
	3.3		nunication Demands of Autonomous Aerial Networks	49
			Device Autonomy	49
	2.4		Mission Autonomy	50
			titative Communication Requirements	51
	3.5	Aerial	Wi-Fi Networks: Results from Existing Real-World Measurements	52
			Network Architecture	52
			Experimental Results	54
	3.6	Concl	usions and Outlook	56
4	Disr	uption-	Tolerant Airborne Networks and Protocols	58
	4.1		uction	58
	4.2	Airbo	rne Network Environment	59
	4.3		ed Work	62
		4.3.1	Traditional Internet Protocols	62
		4.3.2	Mobile Wireless Network Protocols	65
			Transportation Network Protocols	67
			Cross-Layering Cross-Layering	69
	4.4		autical Protocol Architecture	70
		4.4.1	AeroTP: TCP-Friendly Transport Protocol	71
		4.4.2	AeroNP: IP-Compatible Network Protocol	76
		4.4.3	AeroRP: Location-Aware Routing Algorithm	78
	4.5	Perfor	mance Evaluation	82
		4.5.1	AeroTP Simulation Results	82
		4.5.2	AeroRP and AeroNP Simulation Results	88
	4.6	Summ		95
5	IJAV	System	s and Networks: Emulation and Field Demonstration	06
	5.1		nned Aerial Vehicle (UAV) Platform Systems	96
	5.1	5.1.1	UAV Platform System	96
		5.1.2	UAV Autopilot Control System	97
			UAV Communication System	99
		3.1.3	CAY Communication System	102

6

7	Sat	fety, Security, and Privacy Aspects in UAV Networks	160
	7.1		160
	7.2	Safety in the Sky	161
		7.2.1 Automatic Dependent Surveillance – Broadcast (ADS-B)	162
		7.2.2 FLARM	163
		7.2.3 ADS-B Versus FLARM for Gliders	163
		7.2.4 L-Band Digital Aeronautical Communications System (LDACS)	164
		7.2.5 Aeronautical Mobile Aircraft Communication System (AeroMACS)	
		7.2.6 Self-organized Airborne Network (SOAN)	164
		7.2.7 Beyond the Radio Line of Sight (BRLoS)	164
		7.2.8 Benefits of Self-organized Airborne Networks	166 166
	7.3		166
		7.3.1 Fourth Amendment in the Context of UAVs	167
	7.4		168
	7.5	Security Requirements at UAV Level	169
	7.6		172
		7.6.1 Security Requirements for Standalone Swarms	173
		7.6.2 Security Requirements in Ground-Controlled UAV Fleets	174
	7.7	Ongoing Research and Products Related to UAV Security	175
	7.8	Summary	176
8	Colla	aboration Between Autonomous Drones and Swarming	177
	8.1	Introduction and Background	177
	8.2	Why Use Swarms of Unmanned Aerial Systems?	178
		8.2.1 Continuous Flight/Mission	179
		8.2.2 Increased Mission Flexibility	180
		8.2.3 Increased Capabilities	181
		8.2.4 Additional Features	182
		8.2.5 Summary	183
	8.3	Major Issues and Research Directions	183
		8.3.1 Localization, Proximity Detection, and Positioning	183
		8.3.2 Man Swarm Interaction	186
		8.3.3 Degraded Mode of Operation	187
		8.3.4 Safety and Legal Issues	189
		8.3.5 Security	190
	8.4	Conclusion	192
9	Real	-World Applications	194
	9.1	Introduction	194
	9.2	Wildlife Detection	194
		9.2.1 Aerial Wildlife Counts	195
		9.2.2 Raven RQ-11A Small Unmanned Aircraft System	196

	9.2.3	Using the Raven RQ-11A sUAS to Estimate the Abundance of Sandhill Cranes (<i>Grus canadensis</i>) at Monte Vista National	
		Wildlife Refuge, Colorado, USA	198
	9.2.4	Evaluation of the Raven sUAS to Detect Greater Sage-Grouse	
		(Centrocercus urophasianus) on Leks, Middle Park, Colorado, USA	201
9.3	Enabling Emergency Communications		204
	9.3.1	Aerial Base Stations	204
	9.3.2	Cyber Physical System Perspective	205
	9.3.3	Scientific and Engineering Challenges	206
	9.3.4	Disaster Response and Emergency Communications	207
	9.3.5	Research Challenges	208
	9.3.6	Deriving Theoretical Models	210
9.4	Sumn	nary	213
Refe	rences		214
Inde	x		242