Contents

	f Figur f Table			xvii xxi xxxiii
Char	oter 1	Intro	oduction	1
1.0		RVIEW	odd on	1
2.0			HE MANUAL	2
Cha	pter 2	Stati	ion Capacity	5
1.0	SANI	TARY W	VASTEWATER FLOW	6
	1.1	Engine	ering Report	6
	1.2	Design	Life	7
	1.3	Popula	tion Growth Projection	7
	1.4	Land D	Development	9
	1.5	Quanti	ty of Available Water	9
	1.6	Quanti	ty of Wastewater Flow	9
	1.7	Additio	onal Contributors	10
		1.7.1	Commercial	10
		1.7.2	Industrial	11
		1.7.3	Institutional	11
		1.7.4	Infiltration and Inflow	11
	1.8	Peak F	Hourly Wastewater Flowrate	12
2.0	STC	RMWAT	TER FLOWS	15
	2.1	Inflow	Hydrograph	16
	2.2	Metho	ds of Developing Inflow Hydrographs	16
		2.2.1	Rational Method	16
		2.2.2	Curve Number Method (Natural Resources	
			Conservation Service Method)	24
			2.2.2.1 Rainfall	24
			2.2.2.2 Runoff Volume Parameters	24
			2.2.2.3 Time Parameters	25

		2.2.2.4	Determination of Runoff Ve	olume	
až.		2.2.2.5			
34.		2.2.2.6		1	
	2.2.3	Comput	terized Runoff Models		
			Planning Models		
		2.2.3.2			
		2.2.3.3	Operational Models		
		2.2.3.4			
3.0	COMBINEI	FLOW S	SYSTEMS		-
4.0	FLOW REG	ULATION	1		-
5.0	QUALITY C	F INFLU	ENT		2
6.0	REFERENC				2
					3
Cha	pter 3 Star	tion Conf	figuration and Design		3
1.0	LOCATION	CONSID	ERATIONS		3
2.0	STATION T	YPES			3
	2.1 Range	s of Flow			3
	2.2 Vertica	al Pumps			4
	2.3 Subme	rsible Pun	nps		4.
	2.4 Centrif	fugal Pum	ps		46
	2.5 Horizo	ntal Pump	os	~	46
3.0	WET WELL			1	46
4.0	AESTHETIC	AND SAF	FETY CONSIDERATIONS		49

	SHELL CONSIDERATIONS
5.0	ARCHITECTURAL DESIGN CONSIDERATIONS
5.0	STRUCTURAL DESIGN CONSIDERATIONS
7.0	REFERENCE
3.0	SUGGESTED READINGS
Chap	oter 4 Pumping Systems

50515353

55 56 58

59

61

1.0	WASTEWATER AND STORMWATER PUMPING STATIONS
2.0	PUMPING SYSTEM HYDRAULICS AND DEFINITIONS
	2.1 6

- 2.1 Capacity
- 2.2 Head
- 2.3 Pump Efficiency and Power Requirements

_			Contents
3.0	PUN	MPS	62
4.0	CEN	TRIFUGAL PUMPS	62
	4.1	Pump Classification	63
	4.2	Impellers	63 67
	4.3	Pump Characteristic Curves	67
	4.4	Cavitation and Net Positive Suction Head	69
	4.5	Pump Operating Range	72
	4.6	Affinity Laws	73 -
	4.7	Pump Construction	76
		4.7.1 Radial-Flow Volute Pumps	76 76
		4.7.2 Axial-Flow Column Pumps	83
		4.7.3 Construction Materials	84
5.0	POS	ITIVE DISPLACEMENT PUMPS	85
	5.1	Archimedes Screw Pumps	85
	5.2	Pneumatic Ejectors	88
	5.3	Airlift Pumps	89
	5.4	Progressive Cavity Pumps	89
6.0	FOR	CE MAINS	89
7.0	WET	WELLS	90
8.0	PUM	P DRIVES	90
	8.1	Electric Motors	91
	8.2	Variable-Speed Motor Operation	93
		8.2.1 Variable-Frequency Drive.	93
		8.2.2 Wound-Rotor Motor Variable Speed	94
		8.2.3 Variable-Voltage Motors	
		8.2.4 Variable-Speed Clutches	95 95
	8.3	Internal Combustion Engines	95
9.0	PUM	P SELECTION	98
	9.1	System Design Considerations	98
		9.1.1 Flowrates	98
		9.1.2 System Head-Capacity Curve	99
		9.1.3 Station Location and Area Served	101
		9.1.4 Force Main	101
	9.2	Selection Procedure	101
		9.2.1 System Head-Capacity Curve Characteristics	
			101

ix

			9.2.2 Preliminary Selection of Pumps	104
			9.2.3 Preparation of System Curves	105
2.5	h		9.2.4 Analyzing System Curves	106
35	10.0	EXA	MPLES OF PUMP SELECTION	106
		10.1	High Friction Head System	106
			10.1.1 On-Off Operation of Single Speed Pumps	107
			10.1.2 Two-Speed Operation of Pumps	107
			10.1.3 Variable-Capacity Operation of Pumps	109
			10.1.4 Power Consumption	109
		10.2	High Static Head System	110
	u v		10.2.1 On-Off Operation of Constant Speed Pumps	115
			10.2.2 Two-Speed Operation of Pumps	115
			10.2.3 Variable-Speed Operation of Pumps	116
			10.2.4 Power Consumption	116
		10.3	Large Pumping Station System	117
	11.0	SPEC	CIFYING PUMP PERFORMANCE	120
	12.0	REF	ERENCE	121
	13.0	SUG	GESTED READINGS	121
	Chap	oter 5	Piping Systems	123
	1.0	GEN	ERAL DESIGN CRITERIA	124
		1.1	Piping	124
		1.2	Valves	125
		1.3	Maintenance	126
		1.4	Force Mains	126
	2.0	FLUI	D FLOW FUNDAMENTALS	128
		2.1	System Curve	129
		2.2	Equations	130
		2.3	Pipe Flow Parameters	131
		2.4	Pipe-Fitting Parameters	132
		2.5	Station Piping	135
		2.6	Discharge Line Piping	136
	3.0	WAT]	ER HAMMER AND SURGE	137
		3.1	Surge Pressure Limits	138

			Contents	xi
	3.2	Checklist for Surge Problems	138	
	3.3	Rigid Water Column Theory	140	
	3.4	Pressure Wave Velocity	145	
250	3.5	Negative Surge Pressure	146	
	3.6	Operational Changes to Reduce Water Hammer by Design	146	
	3.7	Surge Attenuating Devices	147	
	3.8	Closing Check Valve or Pump Control Valve	147	
	3.9	Combination Air Vent and Vacuum Break Valves	149	
	3.10	Pressure Surge Relief Valves	150	
	3.11	Surge Accumulator Tanks	151	
	3.12	Surge Towers	152	
	3.13	Bypass Check Valves	152	
	3.14	Pump Flywheels	153	
	3.15	Surge Analysis Software	153	
4.0	PIPIN	ng material and fittings	156	
	4.1	Pipe Joints and Connections	156	
	4.2	Pipe Supports for Static Loads	157	
	4.3	Pipe Supports for Dynamic Loads	157	
5.0	VAL	VES	160	
	5.1	Valve Types	160	
	5.2	Valve Actuation	163	
	5.3	Valve Applications	164	
6.0	FLO	W METERS	164	
7.0	REF	ERENCES	164	
8.0	SUG	GESTED READINGS	165	
Ch	apter 6	6 Electrical Design	167	
1.0	REI	LABILITY AND REDUNDANCY	168	
2.0	VO	LTAGE CONSIDERATIONS	169	
3.0	SUE	STATIONS	171	
4.0	TR.	ANSFORMERS	172	
5.0	SW	ITCHGEAR	173	
6.0	CO	NDUIT AND WIRE	176	

7.0	LIGHTNING PROTECTION					
8.0	STANDBY POWER					
9.0	ADJUSTABLE-SPEED DRIVES					
	9.1	Matching Variable-Frequency Drives and Motors				
	9.2					
	9.3	Some Problems With Variable-Frequency Drives				
10.0	POW	VER FACTOR				
11.0	ARC	FLASH HAZARD ANALYSIS				
12.0	REF	ERENCES				
13.0	SUG	GESTED READINGS				
Chap	oter 7	Instrumentation and Control Systems				
1.0	PRO	CESS AND INSTRUMENTATION DIAGRAMS				
2.0	LEV	EL MEASUREMENT				
	2.1	Float Switches				
	2.2	Bubbler Systems				
	2.3	Ultrasonic Sensors				
	2.4	Radar Level Sensors				
	2.5	Submersible Level Sensors				
3.0	FLO	W MEASUREMENT				
	3.1	Magnetic Flow Meters				
	3.2	Ultrasonic Flow Meters				
	3.3	Differential Producers				
	3.4	Open Channel Flow Meters—Primary Devices				
	3.5	Open Channel Flow Meters—Secondary Devices				
	3.6	Open Channel Flow Meters—Accuracy				
	3.7	Ancillary Flow Meters				
4.0	PRES	SURE MEASUREMENT				
5.0	ALAI	RMS AND INDICATION				
	5.1	Alarm				
	5.2	Equipment Status Indication				
	5.3	Process Variable Indication				
6.0	OPERATOR INTERFACES					

		Cor	ntents	
	6.1	Control Panels	217	
	6.2	Ancillary Instrumentation	219	
7.0	CON	TROL SYSTEMS	220	
	7.1	Conventional Control Relays	220	
	7.2	Programmable Logic Controllers	220	
	7.3	Single-Loop Digital Controllers and Other Devices	221	
8.0	CON	TROL ALGORITHMS	222	
	8.1	All Constant-Speed Pumps	223	
	8.2	All Variable-Speed Pumps	223	
	8.3	Combination of Constant- and Variable-Speed Pumps	224	
	8.4	Alternation	227	
	8.5	Abnormal Operating Conditions	228	
9.0	VARI	ABLE-SPEED DRIVES	229	
10.0	MISC	CELLANEOUS	230	
	10.1	Installation	230	
	10.2	Seal Water	231	
	10.3	Surge Suppression	232	
	10.4	Contract Document Coordination	232	
	10.5	Training and Maintenance	233	
11.	0 TELI	EMETRY SYSTEMS	233	
	11.1	User Needs	234	
	11.2	System Types	234	
	11.3	Supervisory Control and Data Acquisition Systems	236	
	11.4	Communication Links	237	
	11.5	Remote Terminal Units	240	
12	.0 REL	IABILITY	241	
	12.1	Level Sensing Elements	241	
	12.2	Control Hardware and Algorithms	241	
	12.3	Control Power	242	
	12.4	Pumps and Drives	242	
13	3.0 TES	TING	242	
14	4.0 REI	FERENCES	244	
1.	5.0 SUC	GESTED READINGS	245	

xiii

Chapter 8 Appurtenances					ces	24
	1.0	SCR	EENIN	G		24
ĝ.		1.1	Types	of Screen	S	24
r			1.1.1	Trash R	acks	24
			1.1.2	Manuall	y Cleaned Screens	24
			1.1.3	Basket S	creens	25
			1.1.4	Mechani	ically Cleaned Screens	25
				1.1.4.1	Multi-Rake, Chain-Driven Screens	2.5
				1.1.4.2	Reciprocating Rake Screens	25
				1.1.4.3	Catenary Screens	25
				1.1.4.4	Continuous Self-Cleaning Screens	25
				1.1.4.5	Overhead Trash Rakes	25
			1.1.5	Commin	utors or Grinders	25
		1.2	Screen	ings		25
			1.2.1	Quantiti	es of Screenings	25
			1.2.2	Characte	eristics of Screenings	26
			1.2.3	Handling	g of Screenings	26
			1.2.4	Design I	Practice	26
			1.2.5	Installati	ion	26
			1.2.6	Design		26.
			1.2.7	Instrume	entation	26
			1.2.8	Hydraul	ics	264
			1.2.9	Grit Ren	noval	260
	2.0	ODC	R CON	NTROL		266
		2.1	Natur	e and Orig	gins of Odor	266
		2.2	Odor	Control P	ractices	268
			2.2.1	Pumping	Station Design and Operation	268
			2.2.2	Odor Pr	evention	270
				2.2.2.1	Flushing/Pigging	270
				2.2.2.2	Air/Oxygen Injection	270
				2.2.2.3	Chemical Addition	272
					2.2.2.3.1 Chlorination	273
					2.2.2.3.2 Hydrogen Peroxide	273

Gas Company

4.5.3

289

xvi	Cont	ents	
	5.0	OTHER APPURTENANCES	289
		5.1 Hoists	289
	35	5.2 Safety Features	290
	6.0	REFERENCES	293
	7.0	SUGGESTED READINGS	293

Index