Contents

1	The History of Rocketry and The Systems Involved	1
	1.1 History of Rocketry	1
	1.2 Spacecrafts and Rockets	5
	1.3 Systems Involved in Rockets and Missiles	9
	1.3.1 Rocket Motor Casing	9
	1.3.2 Propellants	10
	1.3.3 Ignition System	10
	1.3.4 Inhibition, Insulation and Liner	11
	1.3.5 Nozzle	11
	1.4 Other Propulsion Systems	13
	1.4.1 Nuclear Propulsion	13
	1.4.2 Electric Propulsion	15
	1.4.3 ION Propulsion	15
	1.5 Milestones for the Development of Rockets, Missiles	
	and Space Vehicles in India	17
2	Rocket Propellants: Classification and	
	Manufacture	19
	2.1 Introduction	19
	2.2 Solid Propellants	21
	2.3 Liquid Propellants	24
	2.4 Hybrid Propellants	26
	2.5 Gelled Propellants	27
	2.6 Manufacture of Propellants	27

Solid Rocket Propellants: Science and Technology Challenges By Haridwar Singh and Himanshu Shekhar © Haridwar Singh and Himanshu Shekhar 2017 Published by the Royal Society of Chemistry, www.rsc.org

	7	

3	Propellant Ingredients and Their Properties	30
	3.1 Solid Propellant Ingredients	30
	3.1.1 Double Base Propellant (DBP) Ingredients	30
	3.1.2 Composite Propellant Ingredients	32
	3.1.3 Fuel-Rich Propellant (FRP) Ingredients	38
	3.2 Liquid Propellant Ingredients	38
	3.3 Ingredients of Hybrid Propellants	41
4	Solid Rocket Propellants: Processing Technologies	43
	4.1 Introduction	43
	4.2 The Manufacture of Double Base Propellants (DBP)	44
	4.2.1 Extruded Double Base (EDB) Propellants	44
	4.2.2 Cast Double Base (CDB) Propellants	46
	4.3 Processing of Composite Propellants (CP)	50
	4.3.1 Hardware Preparations	51
	4.3.2 Insulation Laying	51
	4.3.3 Abrading and Liner Coating	52
	4.3.4 Propellant Mixing	52
	4.3.5 Casting of Propellant	53
	4.3.6 Propellant Curing	54
	4.3.7 Propellant Trimming	55
	4.3.8 Loose Flap Filling	55
	4.3.9 Inhibition	55
	4.4 Processing of Composite Modified Double Base (CMDB) Propellants	56
	4.4.1 The Slurry Cast Technique (SCT)	56
	4.4.2 The Advanced Casting Powder (ACP) Route	57
	4.5 Processing of Extruded Composite Propellants (ECP)	57
	4.6 Processing of FRPs for Ramjet/Scramjet Applications	58
	4.6.1 The Pressing Technique	59
	4.6.2 The Casting Technique	59
5	Insulation, Liner and Inhibition Systems	60
	5.1 Introduction	60
	5.2 The Insulation System	61
	5.3 The Liner System	64
	5.4 The Inhibition System	66
6	The Essence of Solid Rocket Propulsion	69
	6.1 Introduction	69
	6.2 Thermo-Chemistry	72
	6.3 Nozzle Theory	74
	6.4 Internal Ballistics	01

Con	tents		xv
	6.5	Rocket Behavior	84
	6.6	A Case Study	87
		Conclusion	88
7	Qual	ity Control, Assurance and Reliability	90
		the second state of the confidence of the second	
		Introduction	90
	7.2	QC Equipment	91
		7.2.1 Particle Size Analysis	91
		7.2.2 Moisture Content Measurement	92
		7.2.3 Volatile Matter Measurement	93
		7.2.4 Viscosity Measurement	93
		7.2.5 Density Measurement	94
		7.2.6 Calorimetric Value	94
		7.2.7 Burn Rate Measurement	94
		7.2.8 Sensitivity Tests	94
		7.2.9 Thermal Analysis	96
		7.2.10 Testing Mechanical Properties	97
		7.2.11 Radiography	98
	7.3	Instrumental Techniques	99
		7.3.1 Chromatographic Techniques	99
		7.3.2 Spectrophotometry	100
	7.4	7.3.3 Memotitrator	100
		Calibration of Equipment	101
		Ballistic Evaluation	101
	7.6	QC for the Manufacture of Composite Propellants	104
8	Proc	ess Safety	106
	8.1	Introduction	106
	8.2	Classification of Hazard	109
	8.3	Major Accidents	112
		Safety During Propellant Processing	115
	8.5	Common Dos and Don'ts	118
9	Ignit	ion Systems	121
	9.1	Introduction	121
	9.2	Ignition Theories	124
	9.3	Igniter Design	125
	9.4	Igniter Qualification	127
	9.5	Igniter Compositions	128
10	The	Combustion Mechanism of Solid Rocket Propellants	132
	10.1	Introduction	132
	10.2	Thermal Analysis of Crystalline Ingredients	134

				٠	,
٦	r	τ	2	1	
Λ	L	١	/	1	

			4			
C	0	m	*	o	21	1

	10.3	Combustion Mechanism of Composite Propellants	136	
	10.4	The Combustion Mechanism of Double Base Propellants	138	
	10.5	Combustion Mechanism of Nitramine-Based Propellants	140	
	10.6	Flame Structure of Modern Solid Propellants Containing	110	
		HMX and GAP	143	
	10.7	Combustion Characteristics of Advanced Propellants	144	
11	The C	Control and Guidance of Missiles	146	
	11.1	Introduction	146	
	11.2	Missile Control	146	
		11.2.1 Tail Control	148	
		11.2.2 Canard Control	148	
		11.2.3 Wing Control	149	
		11.2.4 Unconventional Control	149	
	11.3	Missile Guidance	150	
		11.3.1 Phases of Missile Guidance	151	
		11.3.2 Missile Guidance Methods	152	
	11.4	Laser Guided Missiles	155	
12	Specia	ll Topics in Rocketry	158	
	12.1	Thrust Vector Control (TVC)	158	
		12.1.1 Shock-Free Thrust Deflection System	161	
		12.1.2 Shock-Augmented Thrust Deflection Systems	162	
	12.2	Structural Integrity of the Propellant	166	
	12.3	Modern Rocket Motor Casing Materials	170	
	12.4	Life Prediction and Extension of Propellants and		
		Rocket Motors	175	
		12.4.1 Failure Modes	177	
		12.4.2 Life Extension	178	
	10.5	12.4.3 Life Extension of Propulsion Systems	180	
	12.5	Catalyzed and Platonized Double Base Propellants	182	
	12.6	Advanced Solid Propellants	185	
		12.6.1 Energetic Oxidizers	186	
	10.7	12.6.2 Energetic Binders and Plasticizers	188	
	12./	Nanomaterials in Rocket Propellants	190	
	12.8	Futuristic Rocket Propellants and Propulsion Systems	197	
	iograph		201	
Subj	bject Index			

1

The History of I Systems Involve

1.1 History of Rocket

Fire is the origin of weapon ding of fire pots, containing reported as far back as 1000 B. Archytas, a Greek philosophe in 360 B.C. He filled water in a The pigeon moved under its of through strategically placed he Alexandria demonstrated the which a globe mounted on two through tangentially placed ex *Philosophiae Naturalis Principi* ples of Natural Philosophy) in defined reaction principles.

The Chinese were the leaders contributed immensely to both ment of rocketry. By 200 B.C., covered black-powder, while se temperature reaction. They adforgot to add charcoal. They add then, they had made Black-powder, they had made Black-powder.

Solid Rocket Propellants: Science and Tech By Haridwar Singh and Himanshu Shekhar © Haridwar Singh and Himanshu Shekhar Published by the Royal Society of Chemistry