Chapter 1

Introduction to Differential Equations

1.1

12.

15.

18.

. First order; nonlinear because of sin (—-)

Definitions and Terminology

. Fourth order; linear

. Second order; nonlinear because of R?

dy

dx
Writing the differential equation in the form u(dv/du) + (1 +u)v = ue", we see that it is
linear in v. However, writing it in the form (v +uv — ue')(du/dv) +u = 0, we see that it is

nonlinear in u.

From y = € cos 2z we obtain y' = 3e3% cos 92 —2¢3% sin 22 and "’ = 5e3% cos 2z — 12¢% sin 2,
so that 3" — 6y’ + 13y = 0.

Since tanz is not defined for ¢ = 7/2 + nm, n an integer, the domain of y = 5Stan S is
{z | 5% # 7/2 + nm}
or {z | z # /10 + n=/5}. From y' = 25sec? 5z we have

y' = 25(1 + tan® 5z) = 25+ 25 tan? 5z = 25 + y°.

An interval of definition for the solution of the differential equation is (—/10,7/10). Another
interval is (7/10,37/10), and so on.
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21. Writing In(2X — 1) — In(X — 1) = ¢ and differentiating ¥

implicitly we obtain 3

2 dX 1 dX

2 1 ax _ e N e
2X-1 X-1) dt

\
92X —2-2X41dX N |
X -1)(X-1) dt —af |

%=—(2X—1)(X—1)=(X—1)(1—2X).

Exponentiating both sides of the implicit solution we obtain

2X -1
X-1

:et

2X —1=Xet — ¢t
(" =1)= (e —2)X

et —1
X = .
et —2

Solving e’ — 2 = 0 we get ¢t = In2. Thus the solution is defined on (—00,1n2) or on (In2,00).

The graph of the solution defined on (—00,In2) is dashed, and the graph of the solution
defined on (In2, 00) is solid.

dy 2
24. Differentiating y = 222 — 1 + c1e~2*” we obtain d_J =4z — 4acie” %" 50 that
i

d 2 ) 2 .
d_y +dzy = 4z — 4a:clc_2:” +82% —dz + deyze™ = 823
by

In Problems 27-30, we use the Product Rule and the derivative of an integral ((12) of this
1 &

section): (1(—/ g(t)dt = g(x).
%

Ja

x —3t

: XL 3z : dy 3z * e—3t e—3t 3z
27. Differentiating y = e —— dt we obtain - = ¢ ——dt + —-¢e°* or
J1 t dx 1 ; T
d . T g8t 1
A / € _dt + —, so that
dx J1 ot @

d'l/ - T e~3t 1 3 T e—3t
T——3zy==z(e*® —dt+—-|—-3z|e”® | ——dt
rda; 3zy =2 <e /1 ; + - 3z | e /1 r

re—3t ze—St
=.'17(-,’3$/ —dt+1—3(8€3$/ —dt=1
Lt -



1.1 Definitions and Terminology

T o d 2 [T 2

30. Differentiating y = e e / el dt we obtain & = _2z¢=%"—2z¢™7 / et dt+e* 6"
d J0 dz 0

Y

or -2 = —oze " — 2z / e’ dt + 1, so that
. dx 0

dy —g2 —z2 * 12 _1:2 —r2 T t'l
o +2zy = | —22e™" — 2ze edt+1)+2x{e” +e e dt
: 0 0

2 1: 9 z 2
= —9ze~® —2ze™* / et dt+1+ owe™® 4+ owe™" / e dt=1
0 0

33. Force the function y = ™ into the equation y' + 2y = 0 to get
(™) +2(e™*) =0
me™* +2e™* =0
e™(m+2)=0

—2z

Now since ™ > 0 for all values of z, we must have m = —2 and soy =e is a solution.

36. Force the function y = €™ into the equation 2y” + 9y’ — 5y = 0 to get
2(e™*)" +9(e™*) —5(e™*) =0
2m2e™ + 9me™* — 5¢™* =0
em*(2m? +9m —5) =0
€™ (m+5)(2m—1)=0—

Now since €™ > 0 for all values of z , we must have m = —5 and m = 1/2 therefore y = e~5=
and y = e/2 are solutions.

39. Force the function y = ™ into the equation z?y” — Tzy’ + 15y = 0 to get
22 (™) =7z - (™) +15(z™) =0
22 -m(m —1)z™ % = 7z -ma™ ! + 152™ =0
(m? —m)a™ — Tmz™ + 152™ =0
2™[m? —8m + 15| =0
z™[(m —3)(m —5)] =0
The last line implies that m = 3 and m = 5 therefore y = 23 and y = 2% are solutions.

In Problems 41-44, we substitute y = ¢ into the differential equations and use y=0andy" =0

42. Solving ¢ +2¢—3 = (c+3)(c — 1) = 0 we see that y = —3 and y = 1 are constant solutions.




45.

48.

1.2
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From y = (2 + ¢1)? we obtain

dx
Then

((1_{/)- =Q2@+a)’=4(r+c )°.

dy = 4(x + ¢;)>

Inspection of the differential equation reve

als that y = 0 is a solution of the differential

. . . g 5 , 9
equation but is not a member of the one-parameter family y = (z + ¢;)2.

y\? : . .
Y = (1-2(z— (tl))g =l-4(x—c))+4(x - (,'1)’) =1—da+4e; + 427 — S8xey + 4c?
1

From y =2 — (2 — ¢1)? we obtain
dx
dy
—2 = —2(1-2(z—c))= -2+ 42— 4eq
da

4y =4 (:7' —(z - cl)z) =4 (.1’ — 22+ 2re — (f) =dx —42% 1+ R — -l(r‘f.

Then

dx

Inspection of the differential equation reve

(s

1y \ 2 1
(_/) LS
dax

s that y = z is a solution of the differential

. . 2
equation but not a member of the one-parameter family y = 2 — (2 — ¢, i

Initial-Value Problems

. Letting 2 = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y=1/(2®-1).

This solution is defined on the interval (1, ).

6. Letting » = 1/2 and solving —4 = 1/(1/4 + ¢) We get e = =1/2. The solution. is Y=
1/(z% - 1/2) = 2/(22? —1). This solution is defined on the interval (-1/v2, 1/v2).
In Problems 7-10. we use 2 — c1cost 4+ cosint and 2! = —c18int + cocost to obtain a
system of two equations in the two unknowns ¢, and Ca.

9. From the initial conditions we obtain

V31 11 V3
2Ty gt 5 =0

Solving, we find ¢; = V3/4 and ¢y = 1/4. The solution of the initial-value problem is

= (\/3/4) cost + (1/4)sint.

In Problems 11-14. we use y = c1e” 4 cre™* and iy’ = ¢1e® — c2e" to obtain a system of two
/ 1 2 Yy 1 2 !

equations in the two unknowns 1 and cs.



1.2 Initial-Value Problems

12. From the initial conditions we obtain

ecy + 6_102 =0

ecy — g teg =6

Solving, we find c1 = % and c2 = ——15 2 The solution of the initial-value problem is
1 1 1 1
y= —2-63:E = Ee'ze—:c = 56“ — éez’m.

&

15. Two solutions are ¥ = 0 and y ="

18. For f (x,y) = /Ty we have of |0y = %\/rc Jy. Thus the differential equation will have a

unique solution in any region where I >0and y > 0 or where T < 0and y < 0.

21. For f(z, y) = 22 /(4 — y?) we have of /0y = 2x2y/(4 — y?)?. Thus the differential equation

will have a unique solution in any region where Y z =9 —2<Y< 2, ory > 2

24, For f(=. y) =+ z)/(y— x) we have of /0y = = lly= z)?. Thus the differential equation

will have & unique golution in any region where y < T OF where y > T-

In Problems 25-28, we identify f(@.Y) = Jyr -9 and 0f /0y = y/ V¥ — 9 We see that i
and Of [0y are both continuous in the regions of the plane determined by Y < _3andy >3

with no restrictions on T-
7. Since (2, —3) is not in either of the regions defined by ¥ < _3ory > 3, there is no guarantee

of a unique solution through (2, -3).

3

o

d
. (a) Since == tan (z+¢) = sect (z+¢) = 1+tan® (z + c), we see that y = tan (xz+¢) satisfies

T
the differential equation.

(b) Solving y(0) = tanc — () we obtain ¢ = 0 and y = tan - Since tan T is discontinuous at

¢ = +m/2, the solution is not defined on (—2 2) because it contains =7 2.

(c) The largest interval on which the solution cai exist is (—7/2:T 2)-

33. (a) Differentiating 372 —y> =cWe get 6z — 2yy =0or yy = 3.

(b) Solving 322 —y> =3 for y we get
y=¢1(m)=m, 1<z <00,
y=¢2(w)=—m, 1<a <o
y=¢s(w)=\/’3—(§2’:1’), _w<z<—L
‘y=¢4(m)=—\/é—(’m2’:ﬁ, —oo < <=1

(c) Only y = o3(x) satisfies y(—2) = 3
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In Problems 35-38. we consider the points on the graphs with x-coordinates xop = —1, xg =0,
and zo = 1. The slopes of the tangent lines at these points are compared with the slopes given by

36.

39.

42.

1.3

y'(x0) in (a) through (f).

The graph satisfies the conditions in (e).

Using the function y = ¢; cos 3z + ¢o sin 3z and the first boundary condition we get
y(0) = ¢1cos0+ c2sin0 =0

Therefore ¢; = 0. Similarly, for the second boundary condition we get

y(mw/6) = casin3 (7/6) = —1

Therefore ¢o = —1. The solution to the boundary value problem is y(z) = —sin3z.

The derivative of the function y = ¢ cos 3z + cgsin3z is ¥y = —3¢; sin3z + 3¢z cos 3z and
using the two boundary conditions we get

y(0)=c1 +0=1

Therefore ¢; = 1. In addition

Yy (m) =0—3ca=5

5
Therefore co = —5/3. The solution to this boundary value problem is y(z) = cos 3z — 3 sin 3z.

Differential Equations as Mathematical Models

. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = koP2. Since

dP/dt = b — d, the differential equation is dP/dt = k1 P — ko P2.

. By inspecting the graph in the text we take T, to be T),(t) = 80 — 30cos (7t/12). Then the

temperature of the body at time ¢ is determined by the differential equation

%:tf —k [T— (80 — 30cos (%t))] . t>0.

. The rate at which salt is leaving the tank is

A
Rout (3 gal/min) - <ﬁ lb/gal) = 1—’36 b /min.

Thus dA/dt = A/100. The initial amount is A(0) = 50.




1.3 Differential Equations as Mathematical Models

12. The rate at which salt is entering the tank is

15.

18.

21.

Rin = (cin 1b/gal) - (Tin gal/min) = CinTin 1b/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine
in'the tank at time t. The concentration of salt in the tank as well as in the outflow is
c(t) = z(t)/N(t)- But the number of gallons of brine in the tank remains steady, is increased,
or is decreased depending on whether Tin = Touts Tin > Tout; OF Tin < Tout- 1N any case, the
number of gallons of brine in the tank at time t is N (t) = No+ (Tin — Tout)t- The output rate
of salt is then

Rout = ( Not (7‘:— —" b /ga1> s (P gal/min) = Tout Yot (r: == 1b/min.
The differential equation for the amount of salt, dA/dt = Rin — Rsiey 18
ﬁ=c- Tin —T 4 or d—4+ i A = cinTi
gt cinTin T Tout Ny (rin — Tout)t dt " No+ (Fin — Tout)t i

Since i = dg/dt and Ld?q/dt* + Rdg/dt = E(t), we obtain Ldi/dt + Ri= E(t).

Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below
its equilibrium position, the number of cubic feet in the additional submerged portion is
the volume of the circular cylinder: 7% (radius)? x height or 7(s/2)%y. Then we have from
Archimedes’ principle "

Upward force of water on barrel = Weight of water displaced
= (62.4) x (Volume of water displaced)

— (62.4)7(s/2)*y = 15.6msy.

It then follows from Newton’s second law that
w d?y 9 d*y 15.6ms%g
E Et—z = —15.67s"y or Ezf —T Y= 0,

where g = 32 and w is the weight of the barrel in pounds.

As the rocket climbs (in the positive direction), it spends its amount of fuel and therefore the
mass of the fuel changes with time. The air resistance acts in the opposite direction of the
motion and the upward thrust R works in the same direction. Using Newton's second law we
get

d

a(mv) =-mg—kv+R
Now because the mass is variable, we must use the product rule to expand the left side of the
equation. Doing sO gives us the following:

d
E(mv) —-—mg—kv+R

dm dv
UX—d—t——&—mx?ﬁ———mg—kv+R

The last line is the differential equation we wanted to find.
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24. The gravitational force on m is F = —kM,m/r?. Since M, = 4x6r %/3 and M = 4wéR3/3,
we have M, = 3M/R? and

M.m r3Mm/R? mAl
F=-k 2 =k - ==k e

Now from F = ma = d*r/dt? we have

d?r mA/ d*r kAT
Mm—7=—h——7 O — = ——p.

dt? R3 dt? R3

27. The differential equation is 2/(t) = r — ka(t) where k > 0.

Chapter 1 in Review

d . .
3. d—(cl cos kx + casinka) = —key sin ka + key cos ka:
2
p y
a 2 2. s 27 PRI
72 —— (1 cos ka + casin ka) = —k>e¢; cos kx — k casinkz = —k=(c; cos ka + o sinkz);
2
d=y 2
— =—k"y or +l. y=20
da? ‘ 1 2
6. ¥ = —cie®sinx + cr1e” cosx + o€’ cos x + coe” sin a
Yy = —cretcosx — ey sina — cre’sinx + ¢1e® cosx — o€ sina + cae” cosx + eoe’ cosa +

coe” sin
= —2cie’ sinx 4 2e06" cos x;
"

Y' =2y = —2c1e” cosz — 2cpe” sinx = —2y; y' =2y +2y=0

9. b 12. a. b.d

15. The slope of the tangent line at (w,y) is y'. so the differential equation is Y =22 + 92

18. (a) Differentiating y* — 2y = 22 — 2 + ¢ we obtain 20y’ =2y =2x—1lor 2y—2)y =22 —1.

(b) Setting 22 = 0 and y = 1 in the solution we have 1 —2 = 0 — 0 +core¢=—1. Thus, a
solution of the initial-value problem is Y —2y=a2—2-1.
(c) Solving the equation y? — 2y — (22 — 2 — 1) 0 by the quadratic formula we get

y=02x/4+4@2-2-1))/2 =1+ V22 =1+ /a(x—1). Since z(z —1) >0
for @ < 0 or x > 1, we see that neither y=1l+z(x—1)nory=1- /z(zx— 1) is

differentiable at @ = 0. Thus. both functions are solutions of the differential equation,
but neither is a solution of the initial-value problem.



Chapter 1 in Review

y=—x2+02

(b) When y = 24en,y =20 and (/) = 472, When y = —x* 42 Y
(y)? = 4a”-
) —g2, < 0
(c) Pasting together =%, T > 0, and —g2, <0, we get Yy =
2, x>0.
24. Differentiating ¥ = rsinT + (cos T) In(cos ¥) we get
; —sin® :
y =zcosT ST 4+ cosT —-————-> — (sina)In (cos )
cos T

_ pcosz +sinz —sinT — (sinz) In (cos x)

_ rcos — (sinz)In (cos )
and

—sinT
Y = —wsinz 4 COST sin@ ~———-—> — (cos x) In (cos )
cos T
sin? T
— —gsinz+cosT+ ST _ (cosw)In (cos )
cos T
. 1 —cos’ T
_ _pena Bl = (cos x) In (cos x)
cos T

_ _psing +cosT +seCcT — cosa — (cosx)In (cos )

— —gpsinT +secT — (cosz)In (cosT).
Thus

1 — —92¢ and

Y +y=—xsinT + seca — (cos ) In(cos x) + T SINT + (cosx) In (cos x) = secT.

To obtain an interval of definition we note that the domain of Inx is (0,00), SO W€ must have

cosx > 0. Thus, an interval of definition is (—m/2.7 /2).

In Problems 27-30 we use (12) of Section 1.1 and the Product Rule.

27 T
y:ecos:r./ tc—costdt
0

dy i R . [T, _cos
= ecos:r (xe (,os.l) _sin Iecosx te cost dt
dx 0
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dy * * :
d_J + (sinz) y = e*®%ze™ “®* — sin ze®** / te” St dt +sinz (ecosm / gl dt)
0 0

T
T T
=:L‘—sinxe°°5z/ te_°°5tdt+sin:eew”/ te” St dt =z
0 0
30.
td T
5 12 12 .
1 =sma:/ e costdt—cosa:/ e’ sintdt
0 0

2 b 2 2 = 2
y =sinx (em cos 1) +cosT / e'” costdt — cosx (e"‘c sin :L) +sinx / e’ sintdt
0 0

T T
=CoST / et costdt +sinz / et sint dt
0 0

2 T 2 T o
Y’ =cosz (ez cos;v) —sin.’L'/ et costdt+sin$(em sinm) +cos:c/ e sint dt
0 0
y
2 9 : e 2 T 5
=g (c052x+sin'.7:)— sin:c/ et Costdt—cosa:/ e' sintdt
0 0
_,1.2
=" —y
2 2

33. Using implicit differentiation we get
P +3y=2-3c
3%y +3y' = -3
vy +y = -1

(¥* + 1)y = -1

|

V=

Differentiating the last line and remembering to use the quotient rule on the right side leads

to g
g
(y*+1)°
Now since y' = —1 / (y2 + 1) we can write the last equation as
2y 2y ~1 =1 \®
"= = =2 =2y(y')?
R L (RS VECER ) y(y2+1) i)

which is what we wanted to show.
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6. Substituting y = ¢1 + cox and y' = co into the left-hand side of the differential equation gives

39.

42.

45.

Yy +2y=c2+2(a + ez) = 2 + 2¢1 + 2c2.

Setting the result equal to the right-hand side of the differential equation yields
co +2¢) + 2c0z = 3T
(e2 + 2¢1) + 2c2x = 0+ 3x.

3 3 3 3 3
Therefore, 2¢o = 3 or 2 =3 and §+201:00r c1=—§-§=—1. Thusy=—21—+§m.

In Problem 39-42, y = c1e” 3% 4 co€” + 4z is given as a two-parameter family of solutions
of the second-order differential equation y" + 2y’ — 3y =—12¢+8.

If y(0) = 0 and y'(0) = 0, then

c1+c2=0
—3c1+ca=—4
subtracting the second equation from the first gives us 4c; =4 or c1 = i1 and thus ¢ = —1.

Therefore y = e 3% — % + 4.
Ify(—1)=1land y'(-1) =1, then

cle3 + cze”1 =5

—3¢cie3 + et =3

subtracting the second equation from the first gives us 4c; =8or ¢ = 2¢~3, and thus ¢y = 3e.
Therefore y = 2e~3273 + 3e*t1 4+ 4z.

From the graph we see that estimates for yo and y; are Yo = —3 and y; =0.



